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The analysis of dose-response curves-a practical approach
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1 The rationale for the objective assessment of dose-response curves (DRCs) is pre-
sented.
2 Using data derived from isoprenaline/heart rate responses studies, two new statistical
methods of objectively defining the terminal linear segment of an incomplete DRC are
presented.
3 Using data derived from phenylephrine/diastolic blood pressure response studies, the
parallel shift quadratic model of Sumner et al. (1982) has been extended to include a
measure of the suitability of the quadratic model for each individual data set using the
Akaike information criterion.
4 A parallel shift Emax model is proposed for complete DRCs.
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Introduction

The technique of constructing dose-response
curves (DRCs) is not new and its applications
are widespread throughout scientific disciplines.
Within the basic medical sciences and specifically
within pharmacology comparisons of log DRCs-
usually sigmoidal in shape-have centred around
comparisons of the parameters Ema, ED50 and
the slope of the simple linear regression line
relating effect and log dose (or log concentra-
tion). The slope is calculated using only the
approximately linear central portion of the sig-
moid curve. These comparisons have usually
been made using graphical methods. In the
presence of a competitive antagonist, parallel
shift of the DRC is expected. Mathematically
the relationship can be expressed as:

E = E .D5 D(1
ED50 + D(1

where E = effect of any drug dose D
Emax = maximum effect
ED50 = dose producing half

maximum effect
D = drug dose

This formula was originally described by Hill
(1910) and has been used in many different
situations including relating both drug concen-
tration in a body compartment to effect and also
the magnitude of an extraneous stimulus to effect.
When log dose is plotted against response the
relationship takes on a sigmoidal form. This
mathematical relationship does not include terms
to describe compensatory homeostatic effects
induced by the administered drug.
These commonly used graphical methods of

comparison are associated with a number of
problems:

1. In human studies the top of the dose-response
curve cannot usually be constructed hence Em.,
and ED50 cannot be calculated directly from the
observed data. Such curves have been described
as incomplete (Figure 1).
2. Unless modelling techniques are employed
Emax and ED50 derived from graphical methods
do not utilise all the data points.
3. When slopes of the 'linear' segments are
compared all data points are rarely utilised. The
initial points are disregarded usually on the basis
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are of greatest potential use when only the lower
!5 part of the dose-response curve can be constructed

and are of no additional benefit when the data
for the complete curve are available. Unfor-

!0 - tunately because of the distribution of the points
on a double reciprocal plot, the precision of the

5
line in the area of interest close to the axes is
poor. In addition, the reciprocal transformations
produce heteroscedastic (unequal variance) dis-

o - tributions along the line requiring weighted re-
gression procedures. Other more complicated

5 methods have also been described (Paton, 1961).
Despite these problems graphical methods

continue to be employed to compare DRCs.
o o 6 o 8 We have developed a rational approach to the
0.4 0.6 0.8 1.0 1.2 1.4 analysis of such data which attempts (usuallylog10 dose successfully) to maximise the power of a com-

'Incomplete loglo dose-response curve. parison and provides a statistical approach to the
:ical plot of the function: exclusion of data points when necessary. We
Ema, dose also describe methods which permit, whenever
ED;n + dose where Emax = 50, ED50 = 25 possible, utilisation of all data points.

of their appearance, when effect is plotted against
log dose or log concentration. When points
above this 'linear' segment exist, they too are
disregarded for this purpose.

Methods have been emj
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Methods

1 Objective methods to eliminate early data
points and define the 'linear' segment ofthe curve

ployed to 'straighten' Traditionally plots have been examined visually
ion of the relationship and early data points excluded on that basis.
e. The most frequently This method can produce, with some data sets,
ocal plot which plots 1/ large intra- and inter-observer variation. We
igure 2). Such methods propose two methods which, between them, will

objectively choose the points that most reason-
ably describe the 'linear' segment. They will not,
however, accept or reject the linear model.
Once the points making up the linear segments

of a pair of DRCs have been defined the dose
ratio (DR) can be calculated from the difference
in the x axis intercepts of the two lines if they are
parallel. If not, the difference in the x coordinates
of an arbitrary y value can be used. Using such
plots, DR = 10(xl-x2) where xl and x2 are the x
values of a given y value. For example, in the
case of isoprenaline dose/heart rate response
curves an ID20, the isoprenaline dose which
increases heart rate by an arbitrary 20 beats
min-', is derived from placebo and B-adreno-
ceptor antagonist curves and the dose ratio cal-
culated as ID20 (antagonist)/ID20 (placebo).

-0.1 0.0 0.1 0.2 0.3

1/Dose

Figure 2 Double reciprocal plot (1/dose vs

1/response) of the function:

E = E. dose where Emax = 50, ED50 = 25
ED50 + dose

y axis intercept = 1/Emax; x axis intercept = 1/ED50

(a) Quadratic check (QC) method Empirically,
incomplete DRCs are often described by a quad-
ratic equation. This observation has already been
described by Sumner et al. (1982) who fitted
quadratic functions to contrived data derived
from the Hill equation (equation 1) and to ex-
perimental data. Using experimental data we
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have adopted a more rigorous approach applying
the Akaike information criterion (AIC) (Akaike,
1976) to accept or reject the quadratic term
(Table 1). As the early points are disregarded,
the remaining points are less and less well fitted
by a quadratic model and correspondingly better
fitted by a straight line (Figure 3).

Initially, all the data is fitted to a simple linear
function:

y = bo + blx

Table l(a) Residual sums of squares (RSS) and
Akaike information criteria (AIC) calculated before
(n = 10) and after serial data point deletion for both
linear and quadratic models used to fit log isoprenaline
dose/heart rate response data after pretreatment with
placebo in a healthy volunteer. The quadratic check
(QC) method chooses the maximum number of points
(marked t) at which the quadratic model first fails to
produce a lower AIC than the linear model. The raw
data are plotted in Figure 3 with the placebo points
marked (U).

Model
Linear Quadratic

Points RSS AIC RSS AIC

10 47.3 42.6 45.0 44.lt
9 44.4 38.1 44.3 40.1
8 42.8 34.1 41.1 35.7
7 25.2 26.6 17.8 26.2
6 16.4 20.8 15.7 22.5
5 11.5 16.2 10.7 17.9
4 11.3 13.7 6.8 13.7
3 97 10.8 9.7 12.8

(b) Residual sums of squares (RSS) and Akaike in-
formation criteria (AIC) calculated before (n = 11)
and after serial data point deletion for both linear and
quadratic models used to fit log isoprenaline dose/
heart rate response data after pretreatment with pro-
pranolol 5 mg iv in the same subjects as in Table la.
The quadratic check (QC) method chooses the maxi-
mum number of points (marked t) at which the quad-
ratic model first fails to produce a lower AIC than the
linear model.

Model
Linear Quadratic

Points RSS AIC RSS AIC

11 347.3 68.4 147.9 61.0
10 292.1 60.8 137.3 55.2
9 199.1 51.6 136.3 50.2
8 198.9 46.3 66.6 39.6
7 86.0 35.2 61.1 34.8
6 53.3 27.9 53.2 29.8t
5 46.1 23.2 17.1 20.2
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Figure 3 Isoprenaline dose-response curves obtained
after i.v. pretreatment with saline placebo (X) and
propranolol 5 mg (0) in a healthy volunteer. When
applied to the placebo data the simple linear regres-
sion (SLR) and quadratic check (QC) methods choose
all points; when applied to the propranolol data the
SLR method chooses the last nine points (----) whilst
QC method chooses the last six points ( ).

and to a quadratic function:

y = bo+ bix + b2x2 (2)
using least squares simple linear and multiple
linear regression analysis. The AIC for each
function is defined as:

AIC = n. loge (RSS) + 2p (3)
where n = number of points

RSS = residual sum of squares
p = number of parameters (linear

function = 2, quadratic = 3)

If the quadratic AIC is lower than the linear AIC
the quadratic term is regarded as contributing
significantly to the reduction in residual sum of
squares. The lowest point of the DRC is there-
fore eliminated and the procedure repeated until
the quadratic AIC exceeds the linear AIC. At
this point the quadratic term no longer contri-
butes significantly. The remaining points are
chosen as the best linear segment.

Previously, we have employed analysis of
variance to estimate the significance of the quad-
ratic term (Jamieson et al., 1985). In doing so we
used P > 0.2 as the rejection criterion for the
quadratic term. We have found this method to
give slopes for the linear segment and dose ratios
which are not significantly different from those
defined using the AIC. Although satisfactory in
our experience for DRCs having a range of 6-18
points, the choice of P > 0.2 is arbitrary.

(b) Simple linear regression (SLR) method
Whereas the QC method identifies the number
of points at which the quadratic term in the
multiple regression equation no longer contri-
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butes to the equation, the SLR method identifies
the number of points which produce the variance
ratio with the most significant P value derived
from ANOVA.
SLR analysis is first performed on all points,

then all but the lowest dose point and so on until
only three points remain. The series of points
yielding the lowest P value is taken as the 'linear'
segment of the DRC. (Table 2, Figure 3).

2 Nonlinear parallel shift models

In concept these methods are identical to the
methods of calculating DR once the 'linear'
segment has been defined. In practice they are
combined with an additional refinement that not
only applies the nonlinear model to each data set
(full model) but also applies a single best fit
model to the combined data set solving for a
parallel shift term (reduced model).

(a) Parallel quadratic functions Although not
a nonlinear model the solution is most easily
achieved using iterative nonlinear regression
analysis software. This method was described by
Sumner et al. (1982) who applied to each of two
data sets a quadratic model of the form:

y = bo + blx + b2X2.
Making the assumption that parallel shift will
occur in the presence of a competitive antagonist,
a reduced model can then be constructed of the
form:

y = bo + b1 (x+A) + b2(x+A)2
where A is the parallel shift term.

DR can be calculated from:
DR = 105 (4)
(if log10 dose transformations are used)

or DR = eA (5)
(if loge dose transformations are used)

Using the same test statistic as Sumner et al.
(1982) the increase in the residual sum of squares
associated with the reduced model can be used
to obtain a P value:

F = (RSS{full} - RSS {reduced})/(P1 - PO) (df = 2, n-6)
RSS {reduced}/(n-P1)

where RSS {full} = residual sum of squares of
full model (both curves)

RSS {reduced} = residual sum of squares of
reduced model
P1 = number of parameters in full model
P0 = number of parameters in reduced model
n = number of data points

If the P value is below an arbitrary value of 0.05
the reduced model may be rejected as unsatis-
factory compared to the full model. This statistic
does not accept or reject the quadratic model,
however.
We have tested the appropriateness of the

quadratic model compared with the linear model
using the AIC (Akaike, 1976). If the AIC for
the quadratic model is lower than that for the
linear model in the majority of subjects a quad-
ratic model is acceptable. If not, a parallel quad-
ratic function model is no more appropriate than
a simple linear model.

(b) Parallel Em.a model Using an Emax model
of the form of equation 1 the full sigmoid func-
tion (log dose vs response) can be modelled
rather than the lower part of the curve. Parallel
shift can then be described using a reduced model
of the form:

Emax * dose

(ED50. A) + dose
where A is the parallel shift term (in this case
equal to the dose ratio).
Depending on the shape of the observed sig-

moid DRC, a better fit may be obtained using an
additional parameter, n, as originally described
by Hill (1910) which can be applied to a reduced
model of the form:

Emax * dosen
(ED50.A)' + dose'

The Emax model requires data points close to
if not at Emax in order to provide reasonably
precise parameter estimates.

In addition to the commercially available
statistical package SAS we have used a modifica-
tion of our BASIC non linear regression analysis
program SIMP (Johnston, 1985). A copy of the
code can be obtained from the authors.

Results

1 SLR method

Using conventional techniques, i.v. isoprenaline
bolus/HR DRCs were obtained in a previous
study after pretreatment with both placebo and
5 mg of i.v. propranolol (Jamieson et al., 1985).
When all the placebo log dose-response data
points were subjected to SLR a highly significant
linear relationship was found (Table 2a). When
serial deletion of data points starting with the
lowest dose was performed, the significance of
the relationship was reduced. Thus this method
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Table 2(a) Analysis of variance before (n = 10) and
after each successive deletion of log isoprenaline dose/
heart rate response data points after pretreatment with
placebo (same data as in Table la). The simple linear
regression (SLR) method chooses the number of points
with the lowest P value (marked t) to reflect the
'linear' segment.

Points F d.f. P

10 99.4 1,8 0.000009t
9 49.6 1,7 0.0002
8 26.6 1,6 0.0002
7 37.8 1,5 0.002
6 23.2 1,4 0.009
5 10.9 1,3 0.05
4 3.1 1,2 0.2
3 1.1 1,1 0.5

(b) Analysis of variance before (n = 11) and
after each successive deletion of log isoprenaline dose/
heart rate response data after pretreatment with 5 mg
iv propranolol (same data as in Table lb). The simple
linear regression (SLR) method chooses the number
of points with the lowest P value (marked t) to reflect
the 'linear' segment.

Points F d.f. P

11 10.9 1,9 0.009
10 12.0 1,8 0.008
9 17.7 1,7 0.004t
8 8.9 1,6 0.02
7 22.5 1,5 0.005
6 22.7 1,4 0.009
5 7.6 1,3 0.07

chose all the data to represent the 'linear' seg-
ment (Figure 3). Using the propranolol data this
approach deletes the first two data points (Table
2b, Figure 3).

2 QC method

Using the same data as in the SLR analysis all 10
points are chosen when applying the QC method
to the placebo data (Table la, Figure 3). When
applied to the propranolol data, however, this
method chooses only the last six data points
compared with the last nine points for the SLR
method (Table 2b, Figure 3).

Thus, although the two methods produce
identically sloped regression lines for the placebo
data (regression coefficient = 19.8), the QC
method produces a slope approximately twice
that of the SLR method when the propranolol
data are considered (regression coefficients of
33.3 and 15.2 respectively). Nevertheless, the
difference in intercepts only translates to a DR
of 9.57 for the QC method vs 9.59 for the SLR

method, comparing doses needed to produce an
increase in HR of 20 beats min-1. When all 20
isoprenaline dose-response studies were con-
sidered, no consistent difference was seen be-
tween the two methods. Had the arbitrary choice
of 20 beats min-' not been used a different DR
would have been obtained in this particular data
set. It is important to use the same value for all
data sets and to define the value before perform-
ing the data analysis as we did.

3 Parallel quadratic function

Using conventional techniques, i.v. infusions of
phenylephrine/diastolic blood pressure DRCs
were obtained in a previous study after pretreat-
ment with both placebo and 30 mg of the a1-
adrenoceptor antagonist urapidil given i.v.
(Jamieson et al., 1986), (Figure 4).
A comparison of AIC values for linear and

quadratic models showed only two out of the 16
data sets were not better modelled by quadratic
functions (Table 3). These two were the largest
data sets. When the reduced model was employed
the increase in the RSS only reached statistical
significance for one data set (Table 3). The mean
dose ratio was 5.48 with a standard error of 0.66.
The raw data used to compile Tables 1 to 3 can
be obtained from the authors.

Discussion

The choice of methods to evaluate DRC data
must be made on the basis of a particular set of
data rather than a fixed approach. A number of
factors are important in the decision making
process:
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Figure 4 Phenylephrine dose-response curves
obtained after i.v. pretreatment with saline placebo
(o) and urapidil 15 mg (o) in a healthy volunteer. The
best fit single quadratic function with parallel shift
(reduced model) is shown.
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Table 3 Difference in Akaike information criteria (AIC) calculated for both linear
(AICI) and quadratic (AICq) models together with total number of data points (n), F
statistic (see text) and the significance of this statistic (P) after both placebo and active
drug (urapidil 30 mg i.v.) pretreatment in eight healthy volunteers. Each of the 16 dose
response curves was constructed using log phenylephrine dose/diastolic blood pressure
response data. Where the AIC difference is negative (marked *), the quadratic model is
not superior to the linear model. A single dose-response curve (marked -) was a perfect
quadratic curve and hence the error sum of squares was zero making an AIC difference
impossible to calculate. The F statistic just reaches statistical significance for only one
subject (marked t) and hence the reduced model is used to calculate dose ratios for all
subjects.

Subject Study AICrAICq n F P DR

1 Placebo 2.07
Active 1.61 14 4.52 0.049t 4.06

2 Placebo -1.84*
Active 2.20 15 0.32 0.73 3.76

3 Placebo -

Active 8.87 10 4.13 0.11 7.71
4 Placebo -1.71*

Active 3.04 17 0.54 0.59 6.85
5 Placebo 0.89

Active 3.25 13 0.11 0.9 3.48
6 Placebo 2.77

Active 10.96 11 1.80 0.26 8.07
7 Placebo 10.06

Active 1.92 13 0.64 0.56 5.81
8 Placebo 2.49

Active 11.56 13 2.60 0.14 4.06

1 Number of data points

If, for example, an isoprenaline/rise in heart rate
DRC is constructed with 15-20 points between 0
and 30 beats min-' the loss of data points by
using a linear model would not have much impact
on the power of a comparison with a second
similar data set. On the other hand, a tyramine/
rise in systolic blood pressure DRC constructed
with four or at most five data points could be
reduced to an unacceptable two points if such a
method was used.
2 Shape of the observed data points
A complete sigmoid curve obtained from in vitro
work will best be described using the Emax model,
regardless of the number of data points. A phenyl-
ephrine/rise in BP DRC reaching a maximum
change in BP of 20 mmHg might be almost
perfectly described by a quadratic function or,
particularly if a higher maximum change in BP
was achieved, might produce four or five points
almost on a straight line. In this latter case, a
linear model would be most appropriate, the
more so if few points were obtained on the initial
part of the curve.

3 Availability of nonlinear regression analysis
(NRA) software

Simple and multiple linear regression analysis is
now widely available in user friendly packages
on most desk top microprocessors, but non linear
regression analysis requires the use of more
complex programs which, although commercially
available in many larger statistical packages, are
not widely used for this purpose.
Taking these factors, into consideration, a

decision to use a linear or non linear method
must be made after assessing the data with simple
graphical and data fitting methods. First the data
should be graphed using the software that will be
used for the next step. The question normally
being asked of the data in the setting of clinical
pharmacology is does a drug shift the DRC? An
impression can be obtained at this stage. If the
two DRCs for most subjects are superimposable
the choice ofmethod is not going to influence the
conclusions.

If NRA is not available, a linear model must
be used. The data should then be fitted to a
quadratic model (equation 2) and the resulting
curve compared with the observed data. If the
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two are very close, particularly in the upper part
of the curve, the quadratic check method will not
be useful and the SLR method must be used to
exclude the early points. If not, either method
can be used.
Both methods of defining the linear segment

require a cut off to be made at an arbitrary level
either using AIC values or P values depending
on the method. Random error in the data in the
area of the cut off may give undue weight to a
given data point. However, this will not lead to
bias in the dose ratios, merely to larger confi-
dence intervals around the DR.
Once the linear segment has been defined, the

least squares regression line for each data set
should be plotted for each subject. Assuming
competitive antagonism a parallel shift would be
expected. Significant deviation from parallelism
in a data set derived from a single individual can
best be tested for using analysis of covariance
which uses all the data points making up the two
lines. Alternatively, the slope (regression co-
efficient) of each line for each subject can be
tested using a paired t-test on the group data.
Depending on whether the lines are parallel, a
DR can be calculated at any y value (parallel) or
a specific y value (non parallel). If statistically
significant deviation from parallelism occurs in
more than one subject it would be wise to reassess
the laboratory and animal data on the test drug
(looking for evidence of partial agonism of non-
competitive receptor blockade) and the clinical
experimental methodology.

Conceptually it would not be unreasonable
to propose a parallel shift linear model after
excluding initial points but this would again
require more complex software which, if avail-
able, would be better used in applying one of the

nonlinear models. When the number of data
points is sufficiently small that initial data point
exclusion cannot be afforded or the initial graph-
ing does not suggest a 'linear' portion and NRA
software is available, a parallel shift quadratic
model should be considered.

If AIC values in the majority of DRCs in a
particular study suggest the quadratic term should
be used, the next step would be to test the
reduced model against the full model as described
by Sumner et al. (1982). We prefer the AIC to
Boxenbaum's F statistic (Boxenbaum et al., 1976)
to test the value of the quadratic term as the
latter provides too conservative an approach in
this situation. If the full model is significantly
better than the reduced model in the majority of
comparisons this suggests nonparallel shift and
reevaluation of existing data on the drug and the
application of an alternative technique.

In some clinical situations (e.g. atropine dose
vs rise in heart rate, ,-adrenoceptor blocker
dose vs suppression of exercise induced tachy-
cardia) a full DRC can be constructed. Under
these circumstances a parallel quadratic shift
model would not be appropriate. A parallel shift
Emax model would be the obvious choice ifNRA
software was available. Failing that, a linear
model could be used after deleting both initial
and terminal points. This could be done by
adapting the SLR method or merely by choosing
points from 20% to 80% of Emax. If sufficient
points are present, a more conservative range of
25% to 75% might be used.

We are grateful for the statistical and computing advice
of Dr Tom J. Prihoda, Robert C. Wood and Dr
William Stewart.
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